Publications

Books

  • T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva, E.M. Viggen. The Lattice Boltzmann Method – Principles and Practice. Springer, 2016. ISBN 978-3319446479. Springer, Amazon
  • M. Bartelmann, B. Feuerbacher, T. Krüger, D. Lüst, A. Rebhan, A. Wipf. Theoretische Physik. Springer Spektrum, 2014. ISBN 978-3642546174. Springer, Amazon

Book chapter

  • P.R. Hoskins,‎ S.F. Keevil (Editors). Academic Practice – A Handbook for Physicists and Engineers involved in Biomedical Research and Teaching. Institute of Physics and Engineering in Medicine, 2017. ISBN 978-1903613634. IPEM, Amazon

Preprints

Journal articles

  1. A. Jötten, A. Schepp, A. Machon, K. Moll, M. Wahlgren, T. Krüger, C. Westerhausen. Survival of P. falciparum infected Red Blood Cell Aggregates in Elongational Shear Flow. Lab Chip (in press) Research Square, Royal Society
  2. L. Koens, R. Vernekar, T. Krüger, M. Lisicki, D.W. Inglis. The slow viscous flow around doubly-periodic arrays of infinite slender cylinders. IMA J. Appl. Math. (in press) arXiv
  3. C. Mallorie, R. Vernekar, B. Owen, D.W. Inglis, T. Krüger. Numerical analysis of flow anisotropy in rotated-square deterministic lateral displacement devices at moderate Reynolds number. Phys. Rev. Fluids (in press) bioRxiv
  4. B. Owen, K. Thota, T. Krüger. Numerical investigation of heterogeneous soft particle pairs in inertial microfluidics. Soft Matter (in press) bioRxiv, Royal Society
  5. R. Enjalbert, T. Krüger, M.O. Bernabeu. Effect of vessel compression on blood flow in microvascular networks: implications for tumour tissue hypoxia. Commun. Phys. (in press) bioRxiv
  6. B. Owen, K. Kechagidis, S.R. Bazaz, R. Enjalbert, E. Essman, C. Malorie, F. Mirghaderi, C. Schaaf, K. Thota, R. Vernekar, Q. Zhou, M.E. Warkiani, H. Stark, T. Krüger. Lattice-Boltzmann Modelling for Inertial Particle Microfluidics Applications — A Tutorial Review. Adv. Phys. X 8:1 (2023) bioRxiv, T&F Online
  7. K. Kechagidis, B. Owen, L. Guillou, H. Tse, D. Di Carlo, T. Krüger. Numerical investigation of the dynamics of a rigid spherical particle in a vortical cross-slot flow at moderate inertia. Microsyst. Nanoeng. 9, 100 (2023) bioRxiv, Nature
  8. Y. Rashidi, G. Simionato, Q. Zhou, T. John, A. Kihm, M. Bendaoud, T. Krüger, M.O. Bernabeu, L. Kaestner, M.W. Laschke, M.D. Menger, C. Wagner, A. Darras. Red blood cell lingering modulates hematocrit distribution in the microcirculation. Biophys. J. 122, 1526 (2023) bioRxiv, ScienceDirect
  9. K. Thota, B. Owen, T. Krüger. Numerical study of the formation and stability of a pair of particles of different sizes in inertial microfluidics. Phys. Fluids 35, 032001 (2023) bioRxiv, AIP
  10. Q. Zhou, K. Schirrmann, E. Doman, Q. Chen, N. Singh, P. Ravi Selvaganapathy, M.O. Bernabeu, O.E. Jensen, A. Juel, I.L. Chernyavsky, T. Krüger. Red blood cell dynamics in extravascular biological tissues modelled as canonical disordered porous media. Interface Focus 12, 20220037 (2022) bioRxiv, Royal Society
  11. Q. Zhou, E. Doman, K. Schirrmann, Q. Chen, E. Seed, E.D. Johnstone, P.R. Selvaganapathy, A. Juel, O.E. Jensen, M.O. Bernabeu, T. Krüger, I.L. Chernyavsky. Micro-haemodynamics at the maternal-fetal interface: experimental, theoretical and clinical perspectives. Curr. Opin. Biomed. Eng. 22, 100387 (2022) ScienceDirect
  12. B. Owen, T. Krüger. Numerical investigation of the formation and stability of homogeneous pairs of soft particles in inertial microfluidics. J. Fluid Mech. 937, A4 (2022) arXiv, JFM
  13. H. Wang, T. Krüger, F. Varnik. Geometry and flow properties affect phase shift between pressure and shear stress waves in blood vessels. Fluids 6(11), 378 (2021) Fluids
  14. Q. Zhou, T. Perovic, I. Fechner, L.T. Edgar, P.R. Hoskins, H. Gerhardt, T. Krüger, M.O. Bernabeu. Association between erythrocyte dynamics and vessel remodelling in developmental vascular networks. J. R. Soc. Interface 18, 20210113 (2021) bioRxiv, Interface
  15. R. Enjalbert, D. Hardman, T Krüger, M.O. Bernabeu. Compressed vessels bias red blood cell partitioning at bifurcations in a hematocrit-dependent manner: Implications in tumor blood flow. PNAS 118, e2025236118 (2021) bioRxiv, PNAS
  16. K.K. Zeming, R. Vernekar, M.T. Chua, K.Y. Quek, G. Sutton, T. Krüger, W.S. Kuan, J. Han. Label-free biophysical markers from whole blood microfluidic immune profiling reveal severe immune response signatures. Small 2006123 (2021) Small
  17. M. Pepona, A. Shek, C. Semprebon, T. Krüger, H. Kusumaatmaja. Modelling ternary fluids in contact with elastic membranes. Phys. Rev. E 103, 022112 (2021) arXiv, PRE
  18. Q. Zhou, J. Fidalgo, M.O. Bernabeu, M.S.N. Oliveira, T. Krüger. Emergent cell-free layer asymmetry and biased haematocrit partition in a biomimetic vascular network of successive bifurcations. Soft Matter 17, 3619-3633 (2021) Soft Matter
  19. M.O. Bernabeu, J. Köry, J.A. Grogan, B. Markelc, A.B. Ricol, M. d’Avezac, R. Enjalbert, J. Kaeppler, N. Daly, J. Hetherington, T. Krüger, P.K. Maini, J.M. Pitt-Francis, R.J. Muschel, T. Alarcón, H.M. Byrne. Abnormal morphology biases haematocrit distribution in tumour vasculature and contributes to heterogeneity in tissue oxygenation. PNAS 117, 27811-27819 (2020) bioRxiv, PNAS
  20. A. Hochstetter, R. Vernekar, R. Austin, H. Becker, J. Beech, D. Fedosov, G. Gompper, S.-C. Kim, J. Smith, G. Stolovitzky, J. Tegenfeldt, B. Wunsch, K.K. Zeming, T. Krüger, D. Inglis. Deterministic Lateral Displacement – Challenges and Perspectives. ACS Nano 14, 9, 10784-10795 (2020), ACS
  21. E. Guzniczak, T. Krüger, H. Bridle, M. Jimenez. Limitation of spiral microchannels for small particle separation in heterogeneous mixtures: impact of particles’ size and deformability. Biomicrofluidics 14, 044113 (2020), Biomicrofluidics
  22. Q. Zhou, J. Fidalgo, L. Calvi, M.O. Bernabeu, P.R. Hoskins, M.S.N. Oliveira, T. Krüger. Spatiotemporal Dynamics of Dilute Red Blood Cell Suspensions in Low-Inertia Microchannel Flow. Biophys. J. 118, 2561-2573 (2020). arXiv, ScienceDirect
  23. D.W. Inglis, R. Vernekar, T. Krüger, S. Feng. The fluidic resistance of an array of obstacles and a method for improving boundaries for Deterministic Lateral Displacement arrays. Microfluidics Nanofluidics 24, 18 (2020). Springer Link
  24. S.R. Bazaz, A. Mashhadian, A. Ehsani, S. Saha, T. Krüger, M.E. Warkiani. Computational Inertial Microfluidics: A Review. Lab Chip 20, 1023-1048 (2020). Lab Chip
  25. H. Wang, T. Krüger, F. Varnik. Effects of size and elasticity on the relation between flow velocity and wall shear stress in side-wall aneurysms: A lattice Boltzmann-based computer simulation study. PLoS ONE 15, e0227770 (2020). bioRxiv, PLoS
  26. M. Wouters, O. Aouane, T. Krüger, J. Harting. Mesoscale simulation of soft particles with tunable contact angle in multi-component fluids. Phys. Rev. E 100, 033309 (2019). arXiv, PRE
  27. U.D. Schiller, T. Krüger, O. Henrich. Mesoscopic Modelling and Simulation of Soft Matter. Soft Matter 14, 9-26 (2018). arXiv, Soft Matter
  28. R. Vernekar, T. Krüger, K. Loutherback, K. Morton, D. Inglis. Anisotropic permeability in deterministic lateral displacement arrays. Lab Chip 17, 3318 (2017). arXiv, Lab Chip
  29. S. Schmieschek, L. Shamardin, S. Frijters, T. Krüger, U.D. Schiller, J. Harting, P.V. Coveney. LB3D: A Parallel Implementation of the Lattice-Boltzmann Method for Simulation of Interacting Amphiphilic Fluids. Comput. Phys. Comm. 217, 149 (2017). ScienceDirect
  30. J. Pande, L. Merchant, T. Krüger, J. Harting, A.-S. Smith. Effect of body deformability on microswimming. Soft Matter 13, 3984 (2017). arXiv, Soft Matter
  31. J. Pande, L. Merchant, T. Krüger, J. Harting, A.-S. Smith. Setting the pace of microswimmers: when increasing viscosity speeds up self-propulsion. New J. Phys. 19, 053024 (2017). arXiv, IOP
  32. T. Krüger. Effect of tube diameter and capillary number on platelet margination and near-wall dynamics. Rheol. Acta 55, 511-526 (2016). arXiv, Springer Link
  33. C. Semprebon, T. Krüger, H. Kusumaatmaja. Ternary Free Energy Lattice Boltzmann Model with Tunable Surface Tensions and Contact Angles. Phys. Rev. E 93, 033305 (2016). arXiv, PRE
  34. R. Vernekar, T. Krüger. Breakdown of deterministic lateral displacement efficiency for non-dilute suspensions: a numerical study. Med. Eng. Phys. 37, 845-854 (2015). arXiv, ScienceDirect
  35. S. Frijters, T. Krüger, J. Harting. Parallelised Hoshen-Kopelman algorithm for lattice-Boltzmann simulations. Comput. Phys. Commun. 189, 92-98 (2015). arXiv, ScienceDirect
  36. M. Gross, T. Krüger, F. Varnik. Fluctuations and diffusion in athermal suspensions of deformable particles. Europhys. Lett. 108, 68006 (2015). arXiv, EPL
  37. G.B. Davies, T. Krüger, P.V. Coveney, J. Harting. Detachment Energies of Spheroidal Particles from Fluid-Fluid Interfaces. J. Chem. Phys. 141, 154902 (2014). arXiv, JCP
  38. G.B. Davies, T. Krüger, P.V. Coveney, J. Harting, F. Bresme. Assembling Ellipsoidal Particles at Fluid Interfaces using Switchable Dipolar Capillary Interactions. Adv. Mater. 26, 6800 (2014). arXiv, Advanced Materials
  39. T. Krüger, D. Holmes, P.V. Coveney. Deformability-based red blood cell separation in deterministic lateral displacement devices – a simulation study. Biomicrofluidics 8, 054114 (2014). arXiv, Biomicrofluidics
  40. G.B. Davies, T. Krüger, P.V. Coveney, J. Harting, F. Bresme. Interface deformations affect the orientation transition of magnetic ellipsoidal particles adsorbed at fluid-fluid interfaces. Soft Matter 10, 6742 (2014). arXiv, Soft Matter
  41. M.O. Bernabeu, M.L. Jones, J.H. Nielsen, T. Krüger, R.W. Nash, D. Groen, S. Schmieschek, J. Hetherington, H. Gerhardt, C.A. Franco, P.V. Coveney. Computer simulations reveal complex distribution of haemodynamic forces in a mouse retina model of angiogenesis. J. R. Soc. Interface 11, 20140543 (2014). arXiv, Interface
  42. T. Krüger, B. Kaoui, J. Harting. Interplay of inertia and deformability on rheological properties of a suspension of capsules. J. Fluid Mech. 751, 725-745 (2014). arXiv, JFM
    Focus on Fluids: C. Misbah. Soft suspensions: inertia cooperates with flexibility. J. Fluid Mech. 760, 1-4 (2014). JFM
  43. M. Gross, T. Krüger, F. Varnik. Rheology of dense suspensions of elastic capsules: normal stresses, yield stress, jamming and confinement effects. Soft Matter 10, 4360 (2014). arXiv, Soft Matter
  44. R.W. Nash, H.B. Carver, M.O. Bernabeu, J. Hetherington, D. Groen, T. Krüger, P.V. Coveney. Choice of boundary condition for lattice-Boltzmann simulation of moderate Reynolds number flow in complex domains. Phys. Rev. E 89, 023303 (2014). arXiv, PRE
  45. T. Krüger, M. Gross, D. Raabe, F. Varnik. Crossover from tumbling to tank-treading-like motion in dense simulated suspensions of red blood cells. Soft Matter 9, 9008 (2013). arXiv, Soft Matter
  46. T. Krüger, S. Frijters, F. Günther, B. Kaoui, J. Harting. Numerical simulations of complex fluid-fluid interface dynamics. Eur. Phys. J. 222, 177 (2013). arXiv, Springer Link
  47. B. Kaoui, T. Krüger, J. Harting. Complex dynamics of a bilamellar vesicle as a simple model for leukocytes. Soft Matter 9, 8057 (2013). arXiv, Soft Matter
  48. M.O. Bernabeu, R.W. Nash, D. Groen, H.B. Carver, J. Hetherington, T. Krüger, P.V. Coveney. Impact of blood rheology on wall shear stress in a model of the middle cerebral artery. Interface Focus 3, 20120087 (2013). arXiv, Royal Society
  49. B. Kaoui, T. Krüger, J. Harting. How does confinement affect the dynamics of viscous vesicles and red blood cells? Soft Matter 8, 9246 (2012). arXiv, Soft Matter
  50. T. Krüger, F. Varnik, D. Raabe. Efficient and accurate simulations of deformable particles immersed in a fluid using a combined immersed boundary lattice Boltzmann finite element method. Comput. Math. Appl. 61, 3485 (2011). arXiv, ScienceDirect
  51. T. Krüger, F. Varnik, D. Raabe. Particle stress in suspensions of soft objects. Philos. T. Roy. Soc. A 369, 2414 (2011). RSTA
  52. T. Krüger, F. Varnik, D. Raabe. Second-order convergence of the deviatoric stress tensor in the standard Bhatnagar-Gross-Krook lattice Boltzmann method. Phys. Rev. E 82, 025701(R) (2010). PRE
  53. M.A. Fallah, V.M. Myles, T. Krüger, K. Sritharan, A. Wixforth, F. Varnik, S.W. Schneider, M.F. Schneider. Acoustic driven flow and lattice Boltzmann simulations to study cell adhesion in biofunctionalized microfluidic channels with complex geometry. Biomicrofluidics 4, 024106 (2010). Biomicrofluidics
  54. T. Krüger, F. Varnik, D. Raabe. Shear stress in lattice Boltzmann simulations. Phys. Rev. E 79, 046704 (2009). arXiv, PRE
  55. T. Krüger, M. Neubert, C. Wetterich. Cosmon lumps and horizonless black holes. Phys. Lett. B 663, 21 (2008). arXiv, ScienceDirect

PhD theses

  • R. Enjalbert. Abnormal microvascular phenotypes in a mouse model of glioblastoma and the effect of vessel compression on blood flow. 2023. University of Edinburgh
  • G. Sutton. Effects of Sex Differences on the myeloid-endothelin system and their implications for blood pressure control. 2022. University of Edinburgh
  • Q. Zhou. Computational modelling of cellular blood flow in complex vascular networks. 2020. University of Edinburgh
  • A. Sathasivam. Frequency composition of wall shear stress in animal models of atherosclerosis. 2020. University of Edinburgh
  • R. Vernekar. Numerical study of microfluidic effects and red blood cell dynamics in ‘deterministic lateral displacement’ geometries. 2019. University of Edinburgh
  • T. Krüger. Computer Simulation Study of Collective Phenomena in Dense Suspensions of Red Blood Cells under Shear. Wiesbaden: Springer Spektrum, 2012. ISBN 978-3834823755. Springer